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ABSTRACT
Despite major advances in antibody discovery technologies, the successful development of monoclonal
antibodies (mAbs) into effective therapeutic and diagnostic agents can often be impeded by develop-
ability liabilities, such as poor expression, low solubility, high viscosity and aggregation. Therefore,
strategies to predict at the early phases of antibody development the risk of late-stage failure of
antibody candidates are highly valuable. In this work, we employ the in silico solubility predictor
CamSol to design a library of 17 variants of a humanized mAb predicted to span a broad range of
solubility values, and we examine their developability potential with a battery of commonly used in vitro
and in silico assays. Our results demonstrate the ability of CamSol to rationally enhance mAb develop-
ability, and provide a quantitative comparison of in vitro developability measurements with each other
and with more resource-intensive solubility measurements, as well as with in silico predictors that offer
a potentially faster and cheaper alternative. We observed a strong correlation between predicted and
experimentally determined solubility values, as well as with measurements obtained using a panel of
in vitro developability assays that probe non-specific interactions. These results indicate that computa-
tional methods have the potential to reduce or eliminate the need of carrying out laborious in vitro
quality controls for large numbers of lead candidates. Overall, our study provides support to the
emerging view that the implementation of in silico tools in antibody discovery campaigns can ensure
rapid and early selection of antibodies with optimal developability potential.
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Introduction

Therapeutic antibodies are the fastest growing class of biophar-
maceuticals, with more than 68 approved products currently on
the market,1,2 which target a variety of disorders including cancer,
hemophilia, autoimmunity and infectious diseases.3,4 In this con-
text, the enormous cost of advancing antibodies into clinical trials
has led to a strong interest in predicting the risk of late-stage
failure in the early discovery phase.5,6 Many antibodies fail drug
development due to poor biophysical properties, such as poor
expression, low solubility, aggregation and lack of specificity.7–9

These failures have prompted the development of predictive
in vitro assays that screen for desirable biophysical properties in
the early discovery phases (“developability”) to anticipate the
clinical success of antibodies. Developability assays are intended
to run prior lead candidate selection and may enable the early
exclusion of biophysically challenging antibodies.10–16

As the developability of proteins is, in contrast to that of
small molecules,17 a recently emerged field of research, there
have been limited endeavours to date to define stringent cri-
teria to accurately predict the developability of antibodies.13

Currently, accurate developability assessments require the com-
bination of several in vitro screening assays, since no single
assay appears to be fully predictive. This aspect makes devel-
opability assessment demanding in both time and resources.13

Early screening is further challenged by the quality and quan-
tity of antibody candidates available at the early stages of devel-
opment, which are commonly prepared in minute amounts, low
concentrations and relatively low purity. These factors may
cause large errors and issues of measurement reproducibility.10

Consequently, these screening methods do not attempt to
directly measure properties such as solubility, aggregation and
viscosity, but they rather aim to determine parameters that are
easier to measure and considered to be predictive of these
properties. For example, non-specific interactions of antibodies
with polyclonal immunoglobulin G (IgG) antibodies assessed
using cross-interaction chromatography (CIC) have been
found to correlate with solubility16 and in vivo clearance
rates.18 It has also been reported that the monomer-retention
time in standup monolayer adsorption chromatography
(SMAC) depends on the non-specific interaction of antibodies
with the column matrix, and tends to correlate with antibody
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precipitation and aggregation,14 while estimates of the apparent
hydrophobicity from hydrophobic interaction chromatography
(HIC) correlate with aggregation10,13 and in vivo clearance.19

Furthermore, reversible self-association from affinity-capture
self-interaction nanoparticle spectroscopy (AC-SINS) has been
found to predict viscosity, solubility issues20–23 and in vivo
clearance.15

Overall, however, the current limitations and challenges that
in vitro assays are facing highlight a pressing need for more
effective and rapid strategies to assess antibody developability.
Given the promising advances in the prediction of solubility,
aggregation and viscosity that have been made in the last
decade,19,24–35 in silico predictors could offer convenient alter-
natives to experimental approaches due to their rapidity and
lack of materials requirement.36 These predictors are typically
based on physico-chemical properties derived from the amino
acid sequence, and are sometimes processed with machine-
learning algorithms, or structure-based algorithms that identify
troublesome surface-exposed patches that can compromise the
biophysical properties of the antibodies.

Here, we quantitatively compare commonly used in vitro
developability assays with each other and with one resource-
intensive solubility measurement, and we further addressed the
problem of identifying effective in silico assays for antibody devel-
opability assessment.We used a humanized IgG subclass 4 (IgG4)
antibody that features complex biophysical properties.37,38 With
the in silico solubility predictor CamSol, we identified surface-
exposed residues that upon mutation are predicted to markedly
reduce or increase solubility.39 Using a large combinatorial in
silico screening of all candidate mutations at these positions, we
designed an ‘antibody solubility library’ consisting of the wild
type, eight variants with progressively increased predicted solubi-
lity values, and eight variants with progressively decreased solubi-
lity values. The CamSol prediction of solubility encompasses the
contribution of various physicochemical properties, such as
hydrophobicity, structural propensities, and electrostatics, both
at the level of individual residues considered within local motifs
and in the broader context of the whole sequence.39 Our results
show that the in silico predicted solubility scores of the antibody
variants correlated highly with the experimental relative solubility
as determined by an ammonium sulfate precipitation assay.40,41

When we subjected the antibody variants to a set of well-
established experimental developability assays, we found that
CamSol predictions correlate remarkably well with experimental
data, in particular with assays that measure non-specific interac-
tions. This study is a demonstration of how the selection and
design of lead candidates with a high developability potential can
be facilitated by rapid computational predictions that only require
the amino acid sequence as an input.

Results

Rational in silico design of an antibody library

The antibody HzATNP (humanized anti-trinitrophenyl) was
selected as a model system because it forms high amounts of
aggregates upon storage38 and its self-association is highly
sensitive to pH and ionic strength.37 We employed the
CamSol method to identify suitable mutation sites, which we

defined as solvent-exposed residues within regions either pre-
dicted to hamper the solubility or to promote it. Specifically,
we calculated the intrinsic solubility profile (Figure 1) of
HzATNP from its amino acid sequence using the CamSol
intrinsic method.39 Then, we carried out structural correc-
tions to the intrinsic solubility profile using a homology
model of HzATNP. The structurally corrected solubility pro-
file was then color-coded onto the surface of the structural
model, where residues with scores ≥ 1 are solubility promot-
ing while scores ≤ −1 denote poorly soluble regions that may
elicit aggregation (Figure 1). We mention in particular that
there are a few highly insoluble patches and many more
highly soluble patches, as is typical of proteins that are stable
in their folded native states.

Based on the structurally corrected solubility profile, one
can readily identify the residue positions predicted to have the
greatest impact on the solubility of the wild-type (WT) anti-
body (Figure 2(a)), as those residues within aggregation hot-
spots (score ≤ −1) or within solubility-promoting regions
(scores ≥ 1). In the design procedure, we suggest the selection
of residues with the lowest solubility scores in the structurally
corrected solubility profiles. This procedure enables the selec-
tion of residues with poor solubility and high solvent expo-
sure, and thus most likely increase the impact of a mutation
on the overall solubility of the corresponding antibody var-
iant. We have not implemented a fully automated computa-
tional procedure for the selection of the candidate mutation
sites, as the users in many cases will have other data that could
guide this selection. Such data could suggest the exclusion of
residue positions known, or believed to be, key determinants
for function, or for conformational and chemical stability. In
particular, in this study, in order to improve the quality of our
quantitative comparison among commonly used experimental
developability assays and in silico predictions, we needed to
make the span of predicted solubilities in our library as large
as possible. Therefore, we selected a set of candidate mutation
sites that could be used to increase solubility, and also a set of
residues that could be used to decrease solubility.

To build a library of monoclonal antibody (mAb) variants
that explores a wide range of solubility values, we first selected
seven surface-exposed amino acids: four in the heavy chain
(E16, D72, K120, K209) and three in the light chain (E86,
K174, K193) of the antigen-binding fragment (Fab). These
positions were predicted to contribute highly to the overall
solubility, and thus represent promising mutation sites to
decrease it (Figure 2(a, b)). Further, we selected seven solvent-
exposed residues, four in the heavy chain (Q1, T68, S70, Q108)
and three in the light chain (V3, T5, V99) of the Fab domain,
which were predicted to negatively affect the overall solubility,
and used the positions of these residues as mutation sites to
design variants with increased solubility values (Figure 2(a, b)).

Next, we performed an in silico screening using combinator-
ial mutagenesis at the 14 selected positions allowing up to four
simultaneous mutations and by trying substitution to all 20
natural amino acids (Figure 2(c, d)). This procedure resulted
in >107 screened mutants. From this very large in silico library,
we selected 46 variants for preliminary expression analysis
(Table S1), based on the criteria that these variants: 1) should
span the entire range of solubility scores in the overall library
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and be as equally spaced as possible within this range; 2) be as
chemically diverse in terms of selected mutations and mutation
sites; and 3) not include mutations to Pro for structural reasons,
Cys to avoid formation of covalent aggregates, Gln/Asn to avoid
potential deamidation sites and Met to avoid potential oxida-
tion. The selected 46 variants were expressed in small-scale in
HEK293 cells and subjected to Protein A purification. From this
pre-screening of 46 variants, 16 variants were selected for
scaled-up production and for full purification including size-
exclusion chromatography (SEC) in order to obtain large
amounts of highly pure antibodies for accurate experimental
analysis. These 16 variants also span the entire range of pre-
dicted solubility values (Table 1), and exhibit acceptable expres-
sion levels and thermal stability, as assessed from the
preliminary screening of the 46 variants (Table S1). The 16
selected variants were expressed in larger scale in HEK293
cells, subjected to thorough purification using Protein A and
SEC, and their thermal stabilities measured by differential scan-
ning fluorimetry (Table 2).

Experimental characterization of the antibody library

Variants were first characterized in terms of their thermal
stability, native fold and pI. The experimental characterization
of the WT mAb and the 16 mutational variants is summarized
in Table 2. All variants were purified to > 99% purity. The
thermal unfolding midpoint of the Fc domain (Tm1), where
no mutations were introduced, was measured to be in the

68.1 ± 0.3°C range for all 17 mAbs. For the Fab domain, all
mutants displayed high thermal unfolding midpoints (Tm2)
with a span of 3.7°C and an average of 79.2°C. The hydro-
dynamic radius (Rh) of each mAb variant was determined to
evaluate whether mutagenesis led to pronounced structural
reorganization. Rh values in the 5.1 ± 0.1 nm range were
obtained for all variants as expected for native IgG
antibodies,42 suggesting that they all possess the same overall
native shape. Some of the mutations in the antibody solubility
library introduced or removed electrostatic charges. We there-
fore measured the isoelectric point (pI) for each mutant,
which was found to span the 7.4– 8.4 range, with good
agreement between theoretical and experimental values.

Evaluation of the developability potential of the antibody
library

To provide a robust evaluation of the developability potential of
the antibody library, we subjected the variants to a set of well-
established developability assays (Figure 3, 4, Table S2).12–14,16,41

Experimental data were compared with the combined-chain
(considering both heavy and light chains) intrinsic CamSol
solubility scores of the variants, which is calculated from the
amino acid sequence alone.36 We found that the developability
assays correlated well with each other and with the CamSol
scores, as shown by a correlation matrix based on Pearson
correlation coefficient (rp) and Spearman’s rank-order correla-
tion coefficient (rs) (Figure 4(a) and S2(a), respectively). The

Figure 1. Illustration of the CamSol method applied to HzATNP. The sequence-based intrinsic solubility scores were calculated through a linear combination of
physicochemical properties with CamSol (left) and structurally corrected with a 2 Å homology model (right) using a default patch radius of 10 Å. The structurally
corrected solubility profile was then projected and color coded on the surface of the antibody. Dark blue represents highly soluble regions, whereas orange and red
represent poorly soluble regions.
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Figure 2. Rational design of the mAb solubility library used in this work. (a) Intrinsic (red/orange/blue) and structurally corrected (green) solubility profiles of
the wild-type mAb calculated for the heavy (top panel) and light (lower panel) chains. Vertical bars denote the sites selected for mutation. (b) Structural model of the
Fab region color coded according to the structurally corrected profile (color-bar); sites selected for mutation are labelled. (c) Distribution of Fab region CamSol
solubility scores calculated for all possible combination of mutations at the selected mutation sites, with a limit of four simultaneous mutations; red indicates
mutations at sites predicted to be highly soluble and blue mutations at sites predicted to be poorly soluble. (d) Boxplot of Fab solubility scores from the distribution
in (c), but separated according to the number of mutations carried out (x-axis); in C and D the dashed line denotes the Fab solubility score of the wild-type antibody.
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Spearman’s rank-order correlation coefficient is a measurement
of the monotonic behaviour of the relationship between two
variables, while the Pearson correlation coefficient estimates
the linearity. Thus, the Spearman’s correlation is an estimate of
the similarity between the ways in which two different assays
rank the molecules, while the Pearson coefficient is a more
quantitative estimate that also accounts for the actual differences
between the measured values, but it is restricted to linear rela-
tionships (Figure S3). The negative correlation between CamSol
and some experimental assays is expected, as it follows from the
fact that CamSol scores grow with increasing solubility while
some experimental readouts decrease with increased solubility.

Ammonium sulfate (AMS) precipitation was conducted
to assess the relative solubility of the antibody library
(Figure 3(a), S4). The AMS½, which is the AMS concentra-
tion at which the soluble antibody concentration is 50%,
was used as a proxy for the solubility of the variants.36 We
found a high correlation between the prediction and the
AMS½ scores with a Spearman’s rank order correlation
coefficient of rs = 0.80 and a Pearson correlation coefficient

of rp = 0.83 (p ≤ 10−4, Figure 4(a), S2). To assess the
apparent hydrophobicity, we used HIC and obtained
a fairly good correlation with the predicted solubility
(rs = −0.75 and rp = −0.71 (p ≤ 0.01)) (Figures 3(b),
4(a)). To probe the tendency of the variants to cross-
interact with polyclonal antibodies, CIC16 was performed,
and a rs = −0.72 and rp = −0.79 (p ≤ 0.01) was obtained
(Figure 3(c), 4(a)). We evaluated the propensity of the
variants to interact with a Zenix 300 column (SMAC)14

and a TSK G3000 SWXL column (SMAC*) by determining
the retention time, and found high correlations (SMAC:
rs = −0.88 and rp = −0.91, p ≤ 1 × 10−6; SMAC*:
rs = −0.88 and rp = −0.89; p ≤ 1 × 10−6) (Figures 3(d, e),
4(a)). With SMAC, mAb variant 11 exhibited an unusually
broad peak, indicating strong non-specific column-mAb
interaction (Figure S6). This mutant was therefore
excluded, as when the shape of the peak was compromised
and thus the retention time alone is no longer a reliable
measurement of non-specific interactions (Figure S6).
The tendency to self-associate was determined using AC-
SINS,12,20 where a lower correlation (rs = −0.57 and
rp = −0.56; p ≤ 0.02) was found compared to HIC, CIC,
SMAC and SMAC* (Figure 3(f), 4(a)). As expected, the
thermal stability of the Fab domain did not show strong
correlations with any of the other assays, although the best
correlation was observed with CamSol (rs = 0.55 and
rp = 0.59, p ≤ 0.01) (Figure 4(a)). Overall, we found that
the CamSol scores show a strong correlation with SMAC
and SMAC* measurements, a good correlation with
CIC and HIC, and a rather poor, but still statistically
significant, correlation with AC-SINS and Tm measure-
ments (Figure 4(a)).

Comparison with other in silico solubility predictors

CamSol scores and acquired experimental data were com-
pared to other in silico predictors (Figure 4(a), S2, S5),
namely SolPro,30 Protein-Sol43 and SAP.27 Like CamSol,
SolPro and Protein-Sol solely require the amino acid
sequence for solubility predictions, whereas SAP requires
structural input as it determines dynamically exposed hydro-
phobic surface patches by short molecular dynamics simula-
tions. In addition, SAP allows calculation of the
developability index (DI), a score that takes into account
the net charge of the antibody and the aggregation propen-
sity of its surface patches.44 CamSol correlates highly with
SAP (rs = −0.93 and rp = −0.93) and DI (rs = −0.91 and
rp = −0.91, p ≤ 4 × 10−7) and less with SolPro (rs = 0.54
and rp = 0.65) and Protein-Sol (rs = 0.54 and rp = 0.63)
(Figure 4(a), S2). As expected, SAP correlates fairly well with
hydrophobicity as assessed by HIC (rs = 0.75 and rp = 0.79).
In addition, SAP and DI also correlate with non-specificity
methods like SMAC, SMAC* and CIC as well as with the
AMS solubility assay (Figure 4, S2). Another interesting
finding is that Protein-Sol predictions correlate highly with
HIC (rs = – 0.8 and rp = −0.87), albeit more weakly than with
the other in vitro measurements.

Table 1. Antibody solubility library designed by CamSol. mAb variants and
their mutations introduced in the heavy and light chains, and the corresponding
CamSol scores. WT indicates wild-type.

mAb
Heavy chain
mutations

Light
chain

mutations

Overall
CamSol
score

Heavy chain
CamSol
score

Light chain
CamSol
score

1 T68G/Q108E T5D/V99R −1.176 −0.791 0.265
2 T68G/Q108E V99R −1.243 −0.791 0.145
3 T68A/Q108D V99G −1.281 −0.804 0.098
4 T68A V99K −1.317 −0.878 0.141
5 T68D V99R −1.323 −0.888 0.145
6 S70E V99D −1.341 −0.907 0.140
7 T68G/S70G/Q108L V99Q −1.389 −0.929 0.087
8 T68D - −1.426 −0.888 −0.038
WT - - −1.486 −0.962 −0.038
9 D72Q - −1.517 −1.000 −0.038
10 - K193V −1.558 −0.962 −0.166
11 E16K/D72V E86V −1.592 −1.019 −0.144
12 E16L/K120F - −1.633 −1.143 −0.038
13 E16V/K120V - −1.658 −1.174 −0.038
14 E16F/D72Q E86F −1.710 −1.162 −0.149
15 E16V/K120F K193Y −1.728 −1.180 −0.153
16 E16F/D72F/K120W K193F −1.792 −1.247 −0.172

Table 2. Initial experimental characterization of the antibody solubility
library. Tm1 and Tm2 is the midpoint of the thermal unfolding transitions of
the Fc domain and the Fab domain, respectively; Rh is the hydrodynamic radius
given with the error of the linear fit and pI is the isoelectric point.

mAb
Tm1

(°C)
Tm2

(°C) Purity (%)
Rhdilute

(nm ± SD)
Theoretical

pI
Experimental

pI

1 68.0 80.7 99.4 5.1 ± 0.1 7.6 8.3
2 68.1 80.8 99.0 5.1 ± 0.2 7.9 8.0
3 68.4 80.8 99.9 5.1 ± 0.0 7.6 7.8
4 68.0 77.5 99.6 5.1 ± 0.1 8.1 8.1
5 68.2 80.0 99.9 5.0 ± 0.1 7.9 7.9
6 68.2 80.7 99.9 5.0 ± 0.0 7.3 7.4
7 68.7 81.1 99.9 5.0 ± 0.1 7.9 7.9
8 68.0 79.0 99.9 5.0 ± 0.0 7.6 7.6
WT 68.2 78.4 99.8 5.1 ± 0.1 8.1 8.0
9 68.0 78.4 99.3 5.0 ± 0.1 7.9 8.3
10 68.1 78.8 99.8 5.0 ± 0.1 7.6 7.7
11 68.1 77.6 99.9 5.1 ± 0.0 8.4 8.4
12 68.0 78.6 99.4 4.9 ± 0.1 7.9 8.1
13 67.5 79.7 99.0 5.3 ± 0.1 7.9 8.1
14 67.9 77.9 99.6 4.9 ± 0.1 8.4 7.9
15 68.1 77.4 99.0 5.3 ± 0.1 7.6 8.3
16 67.8 79.5 99.8 5.0 ± 0.1 7.9 8.1
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Comparing developability assays and solubility
predictors

To illustrate in a more direct manner the relationships between
the different in vitro assays and in silico predictions considered in
this study, we presented a matrix visualisation of the correlation
coefficients and associated p-values between all possible pairwise
comparisons (Figure 4(a) for Pearson correlation, Figure S2 for
Spearman’s rank, and Figure S5 for the corresponding scatter
plots). Similarly, Figure 4(b) reports the mean correlation
strength, defined for each method as the average of the absolute
values of the correlation coefficients with all other in vitro mea-
surements. This representation reveals that, among the in silico
predictors considered, the sequence-based solubility score of
CamSol, and the structure-based calculations of SAP and DI are
on average highly correlated with the experimental measure-
ments, while SolPro and Protein-Sol correlate more weakly.
Among the in vitro developability measurements, SMAC*,
SMAC and CIC have a high mean correlation strength with
in vitro measurements, followed by AMS1/2, HIC and AC-SINS,
and finally by the melting temperature of the Fab domain, which
as expected has the lowest mean correlation. Figure 4(c) shows
instead a network representation of the approximate relative dis-
tances between the assays calculated according to their respective
correlation. These distances were determined based on the dis-
similarity of the Pearson correlation coefficients (see figure

caption and Materials and Methods), and therefore the closer
two assays are, the stronger they correlate with each other.

Discussion

In silico design of mAb developability

In this work we carried out a quantitative comparison between
various methods of assessing mAb developability, including
selected in silico solubility predictors. Our strategy consisted of
constructing and then screening a mAb library designed to span
a broad range of solubility values, with different variants (approxi-
mately) uniformly distributed in this range. To construct this
library, we mutated surface-exposed residues of a biophysically
troublesome mAb,37,38 which were predicted to affect its solubi-
lity. As antibody structures are relatively well conserved for dif-
ferent sequences,45 structural homology models are typically
accurate enough to select suitable surface-exposed residues for
mutation, at least outside the more heterogeneous complemen-
tarity-determining region (CDR) loops. Thus, we performed
a CamSol structurally corrected calculation on a homology
model of the WT to identify suitable sites for amino acid sub-
stitution, followed by a fast, purely sequence-based screening of all
possible mutations at those sites (Figure 2). This mutational
strategy has previously been demonstrated for a single-domain
antibody39 and for β2-microglobulin,46 but never for a large

Figure 3. Developability assessment of the antibody solubility library. The variants were analyzed by: (a) Ammonium sulfate precipitation (AMS), (b)
hydrophobic interaction chromatography (HIC), (c) cross-interaction chromatography (CIC), (d) stand-up monolayer chromatography* (SMAC*) using an TSK
G3000 SWXL column, (e) stand-up monolayer chromatography (SMAC) using an Zenix SEC 300 column, and (f) affinity-capture self-interaction nanoparticle
spectroscopy (AC-SINS), and all types of measurements are compared with combined-chain (heavy and light chains) intrinsic CamSol solubility scores (x-axis).
Data points are labelled according to the mAb numbering and color coded according to their intrinsic solubility CamSol score as depicted in the color bar. The fits
represent linear regressions and the corresponding R2 values are given.
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multi-chain complex like a mAb. In our case, experimental data
confirmed that a simple homology model proved sufficient for
mutating residues of the IgG4 Fab framework (Table 2).
Specifically, residues that contributed strongly to the solubility
according to the structurally corrected calculation were identified
in the structure of the WT mAb, excluding the CDRs (Figure 1).
In fact, even if CDRs often encompass highly insoluble residues
that promote antigen binding,47,48 we excluded these regions from
our screening to minimize the chances of affecting the binding
affinity of the antibody with the selected mutations. However, we
did not directly test whether the mutations that we carried out
affected target binding or immunogenicity, which should be con-
sidered in a screening procedure for therapeutic purposes. We
proceeded in this way because the specific goal of our study was to
quantitatively compare different in vitro and in silico develop-
ability screening methods, independently from the activity or
immunogenicity of the antibodies analyzed. A key result of our
study is that experimental measurements confirmed the effective-
ness of CamSol to rationally modulate with high accuracy the
solubility of a humanized full-length antibody, and to designmAb
variants with a controlled range of developability potentials.

In vitro developability measurements

Our results show that different in vitro developability methods
are on average consistent with each other (Figure 4, S2 and S5).
In particular CIC, SMAC and SMAC* form a group of highly
correlated measurements, in agreement with the fact that these
are different ways of assessing the propensity of the antibodies
to engage in non-specific interactions. HIC also correlates well
with these assays, as its marginally worse correlation is in line
with the fact that HIC more selectively probes hydrophobic
interactions. At variance with these measurements of retention
times in chromatography columns, AMS precipitation is
a more resource-demanding assay that probes more directly
the relative solubility of antibodies by assessing their propensity
to precipitate at increasing concentrations of the crowding
agent AMS. The correlation observed between AMS1/2 solubi-
lity and all chromatography retention times is not perfect, but it
is statistically significant (p < 0.01, Figure 4). Instead, AC-SINC
is a method of assessing the propensity of antibodies to self-
associate in solution. Therefore, the relatively low correlation
with CIC, SMAC, and SMAC* (rp = 0.61, 0.74, and 0.59,
respectively), and in particular the non-statistically significant
correlation with HIC and AMS precipitation, are somewhat
unexpected. However, a weak and sometimes even inverse
correlation between reversible self-association and solubility
has previously been observed.22,23 A low and often non-

Figure 4. Computational predictions are highly correlated with experimental developability measurement, and can then be adopted in alternative to them. (a)
Matrix of Pearson correlation coefficients calculated comparing all combinations of in silico predictions (lower-right) and in vitro developability measurements (top-
left). The corresponding p-values are reported below the coefficients, and the matrix is colored-coded according to the correlation strength, which is defined as the
absolute value of the correlation coefficients (color-bar). See Figure S5 for scatter plots of the underlying data and Figure S2 for the corresponding Spearman’s rank-
order correlation coefficients. (b) Bar-plot with the mean correlation strength, defined for each method (x-axis) as the average of the absolute values of the
correlation coefficients with all other in vitro methods. (c) Network visualisation of methods based on the relative distances calculated according to the dissimilarity
of the Pearson correlation coefficients, only methods with Abs(R) ≥ 0.5 are connected. Distances among the nodes are approximately proportional to 1-Abs(R), as an
exact solution does not exist in the two-dimensional space.
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statistically significant correlation was also found between Tm

and all other developability assays considered (Figure 4). In
general, Tm gives an indication about the conformational sta-
bility of a protein, but no direct correlation has been described
with long-term stability or solubility.10 In agreement with these
results, Tm measurements have previously been shown not to
correlate with other standard developability assays.13

In silico developability predictions

Among the in silico predictors that we considered, CamSol,
SAP and DI scores correlate with in vitro measurements to
a similar extent (Figure 4(b)). However, the implementation
of the SAP and DI methods requires accurate structural mod-
elling of each variant, and the subsequent calculation of these
scores may take up to a few minutes per antibody. Therefore,
these methods would require extensive computational
resources to carry out screenings such as that presented in
Figure 2(c). By contrast, CamSol only requires the amino acid
sequence as an input, so that the screening requires at least 6
orders of magnitude less time than SAP and DI, thus making
this method particularly appealing for the screening of large
antibody libraries. SolPro and Protein-Sol are also sequence-
based methods, but with respect to CamSol show overall
worse, but still statistically significant, correlations with
in vitro measurements. The notable exception is the very
high correlation between HIC and Protein-Sol (rp = 0.87,
p < 10−5), which is the highest correlation of HIC with any
assay (Figure 4, S2). This observation suggests that Protein-Sol
could be a promising screening assay for hydrophobicity.
More generally, the fact that in silico tools that work in
fundamentally different ways give similar ranking of antibody
variants in excellent agreement with experimental measure-
ments is, in our opinion, a clear demonstration of the readi-
ness of in silico tools for implementation in antibody
screening campaigns.

Incorporation of CamSol in silico predictions in mAb
screening campaigns

The good correlation between CamSol scores and reasonably
direct measurements of solubility such as AMS precipitation
(rp = 0.83, p ~ 10−5) is in line with previous reports for mAbs.
Conversely, a key novel finding of this study is the remarkable
correlation of CamSol with assays that probe non-specific
interactions, such as SMAC, SMAC* and CIC.14,16 The correla-
tions between CamSol and these assays are consistently better
than the corresponding correlations between such assays and
measurements of AMS precipitation, which probe solubility in
a more direct way (Figure 4, S2). These findings suggest that
the combination of biophysical properties at the core of the
CamSol calculations is able to capture both the propensity of
mAbs for self-interactions and for interactions with other pro-
teins and surfaces. This result is relevant because non-specific
interactions are important in developability studies and have
been shown to translate into critical issues, such as low expres-
sion, high viscosity and fast in vivo clearance.15,18,19,49 We have
shown that the sequence-based intrinsic CamSol score corre-
lates particularly strongly with SMAC* (rp = −0.89) and SMAC

(rp = −0.91) and fairly well with CIC (rp = −0.79) (Figure 3, 4,
S2). We also note that the value of the correlation of CamSol
and CIC is strongly influenced by the late retention time of
mAb3; if mAb3 is excluded a very strong correlation is found
(rs = −0.91 and rp = −0.92 p ~ 10−6). In essence, the typical
correlation observed among the different in vitro developability
assays that we explored, and in particular CIC, SMAC and
SMAC*, is similar to that observed between these assays and
CamSol (Figure 4), which only requires the amino acid
sequence as input. Consequently, we conclude that, at least
for the library we analyzed, CamSol can replace the in vitro
assays that we used. Another key result of this study is the
finding that high sequence-based CamSol scores, as well as low
SAP or DI scores, which require more time-consuming struc-
ture-based calculations, generally translate into a high develop-
ability potential (Figure 3, 4, S2 and S5).

Taken together, our results demonstrate that the in silico
solubility predictor CamSol is a powerful screening tool to
assess the developability of mAb libraries. In particular, we
expect CamSol to be useful to screen phage libraries and other
in vitro constructed libraries, as these libraries can give rise to
biophysically more challenging mAbs than those derived from
mammalian platforms.13,50,51 Since CamSol can rapidly screen
hundreds of thousands of sequences and requires no protein
structure or material,39 we recommend that it should be run
as a primary screen in parallel with functional screening
assays in the early discovery phase. Ideally, mAbs offering
the best compromise between functionality and predicted
developability can be isolated at a very early stage, thereby
changing the pace of consequent screenings by lowering the
number of antibody candidates for further assessment.

Potential limitations of in silico CamSol assays

A potential limitation of the approach we presented is that
CamSol was used to design this mAb solubility library, which
was then used to assess the performance of various in silico
methods, including CamSol itself. It should, however, be
noted that, while the structurally corrected CamSol profile
was used to select suitable mutation sites (Figure 2, S1),
such profile is never exploited in the calculation of the
sequence-based solubility scores that are later used to assess
the performance of CamSol.36,39 In addition, while these
scores were computed in silico for all possible mutations at
the selected sites, the subsequent selection of the variants to
actually produce in the laboratory was done manually using
the three criteria highlighted at the beginning of the result
section. The only influence of the CamSol scores in this
selection was the requirement that the selected variants should
be approximately uniformly distributed across the whole solu-
bility range. Given that the full range contained more than 107

variants, this manual selection consisted of an essentially
random extraction within each solubility bin, with the sole
consideration to avoid picking the same mutations over and
over and to discard mutations to residues that may give rise to
chemical or structural liability (Cys, Met, Asn, Gln, Pro). In
addition, all mutations in the library are performed at solvent-
exposed positions, while the sequence-based prediction of
CamSol may not be able to effectively capture the impact of
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mutations at buried positions. It should, however, be noted
that the solvent exposure of the mutation sites covers a rather
broad range of levels (Figure S1). In addition, should it be
necessary, buried positions may be identified from homology
models and the structurally corrected CamSol method can be
used instead of the intrinsic one. Finally, variants in our
library differed by up to four mutations, while some antibody
libraries built, for instance, for affinity maturation may have
more substantial differences. However, high correlation
between the CamSol sequence-based score and solubility mea-
surements has previously been reported in the case of
a smaller (nine mAbs) library obtained from in vitro-
directed evolution, whose variants differ in the variable frag-
ment by up to 32 mutations, some found at non-fully exposed
sites.36 The results of that study, together with those reported
here on a larger mAb library and comprising the analysis of
many other in vitro measurements of developability potential,
strongly suggest that CamSol may be broadly applicable to the
developability screening of mAb libraries.

In conclusion, the results that we presented here illustrate
the application of the in silico CamSol method for the rational
design of developable antibodies, for the re-engineering of
troublesome lead candidates, and for the early screening and
ranking of variant libraries. The use of this method thus helps
increase the chances of faster identification of lead candidates
with high developability potential. These findings suggest that
the CamSol method can be used as a convenient in silico
alternative to more demanding in vitro developability assays.

Materials and methods

Model monoclonal antibody

The HzATNP humanized monoclonal IgG4 antibody
(145.2 kDa) used in this study was provided by Novo
Nordisk A/S. A single amino acid substitution within the free
hinge region (S241P) was introduced to avoid formation of
half-mAb, which is a common problem for IgG4 antibodies.52

Homology modelling of HzATNP

Modeller (version 9.12) was used to produce a 2.0 Å homol-
ogy model of the antibody. The crystal structures of the
unliganded mAb7 (PDB code: 4LEX) and recombinant
human IgG4 Fc (PDB code: 4C54) were used as templates
for homology modelling. The sequence identity of the anti-
body with the templates ranged from 86% for the Fab heavy
chain, 98% for the Fab light chain to 100% for the Fc. The
homology model was energy minimized using Gromacs (ver-
sion 5.1.2) to remove possible steric clashes arising from the
model building. Homology models of the variants were gen-
erated as described.39

Design of antibody variants using CamSol

An antibody library was rationally designed using the solubility
predictor CamSol (www-mvsoftware.ch.cam.ac.uk).39 Briefly,
the antibody homology model was used to calculate the struc-
turally corrected solubility profile. PyMol (version 2.0) was

used to color-code the antibody surface according to the struc-
turally corrected solubility profile, which CamSol stores in the
b-factor column of the PDB file format. The color ramp set-
tings were set to dark blue (b > 1), blue (b > 0.8), orange
(b < −0.8) and red (b < −1). The solubility library was built by
selecting 7 surface exposed amino acids that contribute either
highly or poorly to solubility according to the structurally
corrected profile. CamSol was subsequently used to perform
a sequence-based combinatorial screening to test all possible
amino acid substitutions at the selected positions with a limit of
four simultaneous mutations. From the screening, 46 mutants
were selected based on their intrinsic solubility scores. For
computational efficiency, the scores used in the solubility
screening (carried out on more than 107 mutational variants)
where calculated from the heavy and light chain sequences of
the Fab only, as all mutation sites were performed in this
region. Throughout the rest of this report, we provide the
CamSol scores calculated using the light chain and the whole
of the heavy chain sequence. Because the Fc region is identical
in all variants, these scores are by construction correlated with
R = 1 with the Fab scores, and therefore the two types of score
are effectively interchangeable compared with experimental
data. All multi-chain CamSol scores were computed as pre-
viously described from the amino acid sequences of heavy and
light chains.36

Calculation of other in silico scores

Sequence-based solubility scores were calculated using SolPro
(http://scratch.proteomics.ics.uci.edu/)30 and ProteinSol (http://
protein-sol.manchester.ac.uk).43 Structure-based SAP scores and
molecular charge values were calculated using SAP
predictor.27,44 SAP scores were calculated using structural
input based on a SAP radius of 5 Å and pH of 7.0 in the
BIOVIA Discovery Studio 2018 software (Accelrys, USA). The
developability index was calculated using the reported β-value of
0.0815 at 25°C and the following equation:44

DI ¼ SAP score� β � molecular chargeð Þ2

Antibody library expression and purification

Single and multiple mutations were introduced into pNNC340
(expression vector harbouring WT HzANTP heavy chain) and
pNNC341 (expression vector harbouring WT HzANTP light
chain) using QuickChange Lightning multi-site-directed and site-
directed mutagenesis kits, respectively (Agilent Technologies).
Strings encoding desired HzANTP variants with 15-bp 5ʹ and 3ʹ
overhangs matching the 15-bp ends of the linearized WT
HzANTP vectors were ordered from GeneArt (Thermo Fisher
Scientific). Linerized vectors were generated by PCR, using the
KOD xtreme kit (Merck Millipore), according to the manufac-
turer’s instructions, pNNC340-41 as template, and using the
following primers: Forward primer for pNNC340-41, 5ʹ-
TCGACCTCTGGCTAATAAAGG-3ʹ; Reverse primer for
pNNC340-41, 5ʹ-ATTCGCTAGAGATCCGTTTAAAC-3ʹ. The
strings were cloned into the linearized vectors using the In-
Fusion HD cloning kit (Takara Bio) according to the manufac-
turer’s instructions. Site-directed mutagenesis and In-Fusion
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cloning products were transformed into E. coliDH5alpha compe-
tent cells (Thermo Scientific), and the cells were plated on Luria-
Bertani (LB) agar plates containing carbencillin and incubated at
37°C overnight. Single colonies were picked and inoculated in
2 mL LB medium containing carbenicillin and grown at
37°C overnight at 250 rpm shaking. Plasmids were harvested
from overnight cultures using QIAGEN Plasmid Plus 96
BioRobot Kit (Qiagen) and a Biomek FXP pipetting robot
(Beckman Coulter, Brea, US) according to the manufacturer’s
instructions. The protein encoding sequences in the plasmids
were obtained using Eurofins Scientific’s sequencing service.
Clones harbouring vectors encoding the mutations of interest
were re-transformed and single colonies were inoculated in
150 mL of LB medium with carbencillin and incubated overnight
at 37°C, 125 rpm shaking. > 1 mg quantities of each vector were
prepared from these cultures using GenElute HP maxiprep kit
(Sigma-Aldrich), according to the manufacturer’s instruction.
Expi293F™ cells (Thermo Fisher Scientific, Waltman, US) with
a density of 3∂106 cells mL−1 and > 95% viability as measured by
NC-3000 NucleoCounter (Chemometec) were transfected with
heavy chain and light chain encoding vectors in a 1:1 ratio using
the ExpiFectamine™ 293 kit according to the manufacturer’s
instructions (Thermo Fisher Scientific). Consequently, 2 mL and
1–2 L cultures per vector were incubated at 36.5°C, 8% CO2 and
300 or 125 rpm shaking, respectively. The cultures were fed
transfection enhancers 16 hours after transfection, according to
the manufacturer’s instructions. Cultures were incubated for
5 days before harvest. The supernatants were filtered and the
antibody concentrations in the filtrates were quantified by Dip
and ReadTMProtein A (ProA) Biosensors in anOctet system (Pal
ForteBio). Variants were purified on an Äkta Express chromato-
graphy system using affinity purification using Mabselect Sure
Protein A resin followed by a gel filtration column based on the
Superdex200 resin (GE Healthcare). The MabSelect Sure Protein
A column was washed with 0.1 M Hepes, 150 mM NaCl, pH 7.4
and antibodies were eluted from the affinity column with 0.1 M
sodium formate, pH 3.5 onto the pre-equilibrated gel filtration
column via an interconnected loop. The gel filtration column was
operated using a running buffer based on 20 mMHEPES, 0.15 M
NaCl, pH 7.4. Eluted peaks were fractionated in 96-well plates and
fractions were pooled to obtain high purities with minimum of
high-molecular weight protein. Antibody concentrations were
determined by 280 nm absorbance with Dropsense
96 (Trinean).

Sample handling

Samples at the pH and NaCl concentration of interest were
prepared in 20 mM HEPES using Millipore Amicon ultracen-
trifugation (Merck) devices with a molecular cut off of
10 kDa. The desired pH and NaCl concentration was achieved
after up-concentrating the protein samples, followed by three
washes with the desired buffer and a final dilution into the
desired buffer and concentration. Subsequently, protein con-
centration was determined using an extinction coefficient of
1.43 mL mg−1 cm−1 at 280 nm using Dropsense 96 (Trinean).

Dynamic light scattering

The hydrodynamic radius (Rh) was determined by measuring
Rh at a range of protein concentrations and then extrapolating
the Rh value to zero protein concentration to avoid the effects
of mAb self-association or repulsion on Rh determination.53

Experiments were conducted using dynamic light scattering
using a DynaPro plate reader (Wyatt Technology). Twenty µl
of protein samples of 1, 5, 8, 12, 16 and 20 mg/mL in 20 mM
HEPES, 10 mM NaCl, pH 8, were measured in 384-well clear-
bottom plates (Corning) and the hydrodynamic radius was
determined by linear extrapolating to 0 mg/ml. Ten acquisi-
tions were recorded for 5 seconds at 25°C with 0.5 and
1000 nm as low and high cut off values, respectively. Data
processing was performed using Dynamics (version: 7.5.0.17;
Wyatt Technology).

Differential scanning fluorimetry

Thermal denaturation was measured in high sensitivity capillaries
using a Prometheus NT.48 instrument (NanoTemper
Technologies). The antibody mutants were subjected to a linear
thermal ramp (1°C/min, from 20°C to 95°C) and 10–20% laser
excitation intensity. Fluorescence at 350 and 330 nmwas collected
and the unfolding temperatures (Tm) were determined from the
first derivative of the fluorescence ratio (F350/F330). Scattering
onset was measured using integrated back reflection optics of the
instrument. Data processing was performed using PR control
(version: 1.11; NanoTemper Technologies).

Capillary isoelectric focussing

The pI was determined using the iCE3 system (Protein
Simple) equipped with an UV detector at 280 nm and an
Alcoot 720N autosampler. The separation was conducted
using a 50 mm long, 100 µm (I.D.) fluorocarbon coated
capillary (Protein Simple). The catholyte consisted of 0.1 M
NaOH in 0.1% methyl cellulose and the anolyte of 0.08 M
phosphoric acid in 0.1% methyl cellulose. According to the
manufacturer´s protocol, protein samples were mixed with
1% methyl cellulose (0.4% final concentration), 5 µl of phar-
malytes (GE Healthcare; final concentration 4%), 0.5 µl of low
pI marker (pH 4.22) and 0.5 µl high pI marker (pH 9.22; final
concentration: 1%) and sterile water until a final volume of
120 µl and final protein concentration of 0.2–0.5 mg/mL was
reached. Samples were focused for 1 min at 1500 V and
mobilized for 10 min at 3000 V with detection at 280 nm.
Data processing was performed using Chrom Perfect (version
6.0.4). Theoretical pI values were calculated using Biopython.

Ammonium sulfate precipitation

Each antibody variant was prepared at a range of ammonium
sulfate concentrations (0-2 M in steps of 0.125 M) with a final
protein concentration of 1 mg/ml and in 20mMHEPES, 10mM
NaCl, pH 7.0. 20 µl of each assay solution was added in dupli-
cates in a 384-well clear-bottom plate (Corning). The plate was
sealed and incubated for 48 hours at room temperature (RT)
under quiescent conditions protected from light. Samples were
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then transferred to 0.5 mL Eppendorf tubes and centrifuged at
25.000 x g for 30 mins. The concentration of soluble protein in
the supernatant was measured by 280 nm absorbance measure-
ments with Dropsense 96 (Trinean) in duplicates. The precipita-
tion midpoint (AMS½) was determined by fitting a sigmoidal
function (Figure S4).

Size-exclusion chromatography

SEC-HPLC was performed using a HPLC system (1200
model, Agilent Technologies) and a TSK G3000 SWXL SEC
Column (5 µm, 7.8 × 300 mm; Tosoh Bioscience). Eluent
A consisted of 122 mM Na2HPO4, 78 mM NaH2PO4,
300 mM NaCl and 4% 2-propanol at pH 6.8. The flow rate
was set to 0.8 mL/min of 100% eluent A at a column tem-
perature of 28°C for 24 mins. Twenty µg of protein was
injected on the column and detection occurred at 215 nm
and 280 nm. Data processing was performed using
ChemStation (Agilent).

Hydrophobic interaction chromatography

HIC-UPLC was performed using a HPLC/UPLC system
(1100/1200/1290 model, Agilent Technologies) and a Protein-
Pak Hi Res Hydrophobic Interaction Column (2.5 µm,
4.6 × 100 mm; Waters). Eluent A consisted of 2.5 M ammo-
nium sulfate, 125 mM sodium phosphate, pH 6.7 and eluent
B of 125 mM sodium phosphate, pH 6.7. Furthermore, 5%
2-propanol was added to both eluents to prevent bacterial
growth on the column. The gradient was chosen as follows:
at time point 0 min, 50% B was present, after 12 mins, 85% B,
after 15 mins, 80% B, after 16 and 22 mins, 50% B. The flow
rate was set to 0.7 mL/min, column temperature to 30°C and
detection occurred at 280 nm. 4 µg of protein was injected on
the column. Data was analyzed in ChemStation (Agilent
Technologies). The column temperature was set to 30°C.

Affinity-capture self-interaction nanoparticle
spectroscopy

AC-SINS was performed as described.12 Briefly, the capture
solution containing polyclonal goat anti-human IgG Fc (Cat
no.:109–005-008, Jackson ImmunoResearch Europe Ltd, UK)
were prepared in 20 mM NaAc at pH 4.3 in a ratio 1:10 with
gold particles and incubated for 16–20 hrs at RT. Polyethylene
glycol (PEG) was used to block unlabelled sites and was mixed
1:10 with the gold particles/capture antibody solution and
incubated for 1 hr at RT. The solution was centrifuged at
15.000 rpm for 6 mins in order to remove excessive PEG in
the supernatant. The gold particle pellet was resuspended in
2 mM NaAc, pH 4.3 to a volume representing half the volume
of the solution before centrifugation. The antibody variant
samples were mixed with the target buffer 20 mM sodium
citrate, 50 mM NaCl pH 6.0, goat non-specific antibody solu-
tion and gold particle concentrate to achieve the following
final concentrations: antibody variants 1 µg/mL; non-specific
antibodies 0.1 mg/mL and gold particles 1/10 of the total
volume. The assay mix was incubated for 2 hrs at 25°C in

a UV transparent Greiner plate. Absorbance was measured at
460–620 nm at a 3 nm increment.

Cross-interaction chromatography

CIC was performed as described.16 Briefly, 100 mg of
a human serum polyclonal antibody (I4506; Sigma) was
diluted into 3.3 mL of 0.1 M NaHCO3, 0.2 M NaCl, pH 8.2
resulting in a final concentration of approximately 10 mg/mL.
All following steps were performed on an Äkta avant system
(GE Healthcare). A 1 mL HiTrap column (17–0716-01; GE
Healthcare), was washed with 6 ml ice cold 1 mM HCl and
the 3.3 mL IgG solution passed over the column at a flow rate
of 0.1 mL/min. Consequently, the column was stored at
30 min at RT. The previously saved flow-through was passed
two more times over the column at 0.1 mL/min. The final
flow through was saved and protein concentration estimated.
Since N-hydroxysuccinimide groups are released from the
column during coupling and they absorb at 280 nm, the flow-
through was buffer shifted with a Zeba column (Thermo
Fischer) and the protein concentration at A280 was deter-
mined. Approximately 20 mg polyclonal antibody was
coupled to the column. The following steps were repeated
twice with a 15 min incubation at RT in between. The column
was washed with 6 mL of quenching buffer (0.5 M ethanola-
mine, 0.5 M NaCl, pH 8.3), 6 mL of washing buffer (0.1 M
sodium acetate, 0.2 M NaCl, pH 5.0) and 6 mL of quenching
buffer (0.5 M ethanolamine, 0.5 M NaCl, pH 8.3). Lastly, the
pH was adjusted to 7.4 with phosphate-buffered saline (PBS).
Five μg of each antibody variant was injected and cross-
interaction with the human serum polyclonal antibody mea-
sured at a flow rate of 0.1 mL/min using PBS (pH 7.4) as
a mobile phase on an 1100/1200 series HPLC system (Agilent
Technologies). Peak retention times on the column were
monitored at 280 nm.

Standup monolayer chromatography

SMACwas performed as previously described.14 Briefly, a HPLC
system (1100 model, Agilent Technologies) and a Zenix column
(SEC-300, 3 µm, 4.6 × 300 mm; Sepax Technologies) were used.
Eluent A consisted of PBS (pH 7.4) and the flow was set to
0.35 mL/min. 10 µg of protein was injected and peak retention
times were monitored at 280 nm. In the SMAC* experiments we
measured the retention time on a TSK G3000 SWXL SEC
Column (5 µm, 7.8 × 300 mm; Tosoh Bioscience) as described
in the ‘Size-exclusion chromatography’ section.

Statistical analysis

The Spearman’s rank correlation coefficients, Pearson correla-
tion coefficients, and corresponding p-values were calculated
using the functions spearmanr and pearsonr of the scipy.stats
package (version 0.18) in Python 2.7.10. The network repre-
sentation of Figure 3(b) was plotted with the NetworkX library
in Python using as edge lengths 1-Abs(rp) (rp being the Pearson
correlation coefficient) and requiring to connect only points
with Abs(rp) ≥ 0.5.
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Abbreviations

AC-SINS affinity-capture self-interaction nanoparticle
spectroscopy

CIC cross-interaction chromatography
HIC hydrophobic interaction chromatography
HzATNP humanized anti-trinitrophenyl
IgG immunoglobulin G
mAb monoclonal antibody
pI isoelectric point
SEC size-exclusion chromatography
SMAC stand-up monolayer chromatography
STDV standard deviation
Tm melting temperature
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